2024 | |
---|---|
Abid, N., Jaafar, A.B., Bargaoui, Z., and Mannaerts, C.M., 2024. Assessment of long term MOD16 and LSA SAF actual evapotranspiration using Budyko curve. Remote Sensing Applications: Society and Environment, 34, 101166, ISSN 2352-9385. https://doi.org/10.1016/j.rsase.2024.101166 | |
Barrios, J.M., Arboleda, A., Dutra, E., Trigo, I. and Gellens-Meulenberghs, F., 2024. Evapotranspiration and surface energy fluxes across Europe, Africa and Eastern South America throughout the operational life of the Meteosat second generation satellite. Geoscience Data Journal, 00, 1-19. https://doi.org/10.1002/gdj3.235 | |
Bayat, B., Raj, R., Graf, A., Vereecken, H., and Montzka, C., 2024. Comprehensive accuracy assessment of long-term geostationary SEVIRI-MSG evapotranspiration estimates across Europe. Remote Sensing of Environment, 301, 113875. https://doi.org/10.1016/j.rse.2023.113875 | |
Delmotte, A., Juncu, D., Ceamanos, X., Trigo, I. F., and Gomes, S., 2024. Upgrade and extension of LSA-SAF land surface albedo archive from EPS Metop/AVHRR: description and quality assessment. European Journal of Remote Sensing, 2300043, 1-28. https://doi.org/10.1080/22797254.2023.2300043 | |
Hurduc, A., Ermida, S.L., Brito, M.C., Göttsche, F.-M., and DaCamara, C., 2024. Impact of a small-scale solar park on temperature and vegetation parameters obtained from Landsat 8. Renewable Energy, 221, 2024, 119827, ISSN 0960-1481. https://doi.org/10.1016/j.renene.2023.119827 | |
Rains, D., Trigo, I., Dutra, E., Ermida, S., Ghent, D., Hulsman, P., Gómez-Dans, J., and Miralles, D.G., 2024. High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites. Earth System Science Data, 16(1), 567-593. https://doi.org/10.5194/essd-16-567-2024 | |
2023 | |
Alonso, C., Durão, R., and Gouveia, C.M., 2023. A Year of Volcanic Hot-Spot Detection over Mediterranean Europe Using SEVIRI/MSG. Remote Sensing, 15(21), 5219. https://doi.org/10.3390/rs15215219 | |
Bento, V.A., Russo, A., Vieira, I. et al., 2023. Identification of forest vulnerability to droughts in the Iberian Peninsula. Theoretical and Applied Climatology, 152, 559-579. https://doi.org/10.1007/s00704-023-04427-y | |
Ermida, S.L., Hulley, G.C., Goettsche, F.M., and Trigo, I.F., 2023. A Combined Vegetation Cover and Temperature-Emissivity Separation (V-TES) Method to Estimate Land Surface Emissivity. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-18, 4407318. https://doi.org/10.1109/TGRS.2023.3301615 | |
Ermitão, T., Páscoa, P., Trigo, I., Alonso, C., and Gouveia, C., 2023. Mapping the Most Susceptible Regions to Fire in Portugal. Fire, 6(7), 254. https://doi.org/10.3390/fire6070254 | |
Feldman, A.F., Gianotti, D.J.S., Dong, J., Trigo, I.F., Salvucci, G.D., and Entekhabi, D., 2023. Tropical surface temperature response to vegetation cover changes and the role of drylands. Global Change Biology, 29, 110-125. https://doi.org/10.1111/gcb.16455 | |
Fibbi, L., Pieri, M., Chiesi, M., and Maselli, F., 2023. Use of satellite application facility on land surface analysis products to improve an operational method for monitoring forest evapotranspiration. Journal of Applied Remote Sensing, 17(3), 034503. https://doi.org/10.1117/1.JRS.17.034503 | |
Filizzola, C., Falconieri, A., Lacava, T., Marchese, F., Masiello, G., Mazzeo, G., et al., 2023. Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation. Fire, 6(2), 48. https://doi.org/10.3390/fire6020048 | |
Hall, J.V., Schroeder, W., Rishmawi, K., Wooster, M., Schmidt, C.C., Huang, C., et al., 2023. Geostationary active fire products validation: GOES-17 ABI, GOES-16 ABI, and Himawari AHI. International Journal of Remote Sensing, 44(10), 3174-3193. https://doi.org/10.1080/01431161.2023.2217983 | |
Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., et al., 2023. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Reviews of Geophysics, 61, e2022RG000777. https://doi.org/10.1029/2022RG000777 | |
Meng, Y., Zhou, J., Goettsche, F.M., Tang, W., Martins, J., Perez-Planells, L., et al., 2023. Investigation and validation of two all-weather land surface temperature products with in-situ measurements. Geo-spatial Information Science. https://doi.org/10.1080/10095020.2023.2255037 | |
Nguyen, H.M., He, J., and Wooster, M.J., 2023. Biomass burning CO, PM and fuel consumption per unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and Sentinel-5P CO data. Atmospheric Chemistry and Physics, 23, 2089–2118. https://doi.org/10.5194/acp-23-2089-2023 | |
Pérez-Planells, L., Ghent, D., Ermida, S., Martin, M., and Göttsche, F.-M., 2023. Retrieval Consistency between LST CCI Satellite Data Products over Europe and Africa. Remote Sensing, 15(13), 3281. https://doi.org/10.3390/rs15133281 | |
Semeena, V.S., Klein, C., Taylor, C.M., and Webster, S., 2023. Impact of land surface processes on convection over West Africa in convection-permitting ensemble forecasts: A case study using the MOGREPS ensemble. Atmospheric Science Letters, 24(8), e1167. https://doi.org/10.1002/asl.1167 | |
Stante, F., Ermida, S.L., and DaCamara, C.C., 2023. Improving land surface temperature retrievals under high concentrations of dust aerosols. Thesis Discussion. http://hdl.handle.net/10451/59025 | |
Stante, F., Ermida, S.L., DaCamara, C.C., Göttsche, F.-M., and Trigo, I. F. Impact of High Concentrations of Saharan Dust Aerosols on Infrared-Based Land Surface Temperature Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 4064-4079. https://doi.org/10.1109/JSTARS.2023.3263374 | |
Stoyanova, J.S., Georgiev, C.G., Neytchev, P.N., 2023. Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling. Land, 12(1), 240. https://doi.org/10.3390/land12010240 | |
Wen, C., Mamtimin, A., Feng, J., Wang, Y.; Yang, F.; Huo, W., et al., 2023. Diurnal Variation in Urban Heat Island Intensity in Birmingham: The Relationship between Nocturnal Surface and Canopy Heat Islands. Land, 12(11), 2062. https://doi.org/10.3390/land12112062 | |
2022 | |
De Pue, J., Barrios, J.M., Liu, L., Ciais, Ph., Arboleda, A., Hamdi, R., et al., 2022. Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model. BioGeosciences, 19, 4361-4386. https://doi.org/10.5194/bg-19-4361-2022 | |
Dowling, T.P.F., Langsdale, M.F., Ermida, S.L., Wooster M.J., Merbold L., Leitner, S., et al., 2022. A new East African satellite data validation station: performance of the LSA-SAF all-weather land surface temperature product over a savannah biome. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 240-258. https://doi.org/10.1016/j.isprsjprs.2022.03.003 | |
Ermida, S.L., and Trigo, I.F., 2022. A Comprehensive Clear-Sky Database for the Development of Land Surface Temperature Algorithms. Remote Sensing, 14(10), 2329. https://doi.org/10.3390/rs14102329 | |
Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.-M., and Trigo, I.F., 2020. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471 | |
Feldman, A.F., Gianotti, D.J.S., Trigo, I.F., Salvucci, G.D., and Entekhabi, D., 2022. Observed Landscape Responsiveness to Climate Forcing. Water Resources Research, 58, e2021WR030316. https://doi.org/10.1029/2021WR030316 | |
Gouveia, C.M., Martins, J.P.A., Russo, A., Durão, R., and Trigo, I.F., 2022. Monitoring Heat Extremes across Central Europe Using Land Surface Temperature Data Records from SEVIRI/MSG. Remote Sensing 14(14), 3470. https://doi.org/10.3390/rs14143470 | |
Juncu, D., Ceamanos, X., Trigo, I.F., Gomes, S., and Freitas, S.C., 2022. Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements. Geoscientific Instrumentation, Methods and Data Systems, 11(2), 389-412. https://doi.org/10.5194/gi-11-389-2022 | |
Küçük, Ç., Koirala, S., Carvalhais, N., Miralles, D.G., Reichstein, M., and Jung, M., 2022. Characterizing the response of vegetation cover to water limitation in Africa using geostationary satellites. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002730. https://doi.org/10.1029/2021MS002730 | |
Lopes, F.M., Dutra, E., and Trigo, I.F., 2022. Integrating Reanalysis and Satellite Cloud Information to Estimate Surface Downward Long-Wave Radiation. Remote Sensing, 14(7), 1704. https://doi.org/10.3390/rs14071704 | |
Martínez, B., Sánchez-Ruiz, S., Campos-Taberner, García-Haro, F.J., and Gilabert, M.A., 2022. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sensing, 14(6), 1310. https://doi.org/10.3390/rs14061310 | |
Nguyen, H.M., He, J., and Wooster, M.J., 2022. Derivation and validation of top-down African biomass burning CO emissions and fuel consumption measures derived using geostationary FRP data and Sentinal-5P TROPOMI CO retrievals. Atmospheric Chemistry and Physics, Discussions. https://doi.org/10.5194/acp-2022-193 | |
Nogueira, M., Hurduc, A., Ermida, S., Lima, D.C.A., Soares, P.M.M., Johannsen, F., and Dutra, E., 2022. Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product. Geoscientific Model Development, 15, 5949-5965. https://doi.org/10.5194/gmd-15-5949-2022 | |
Monteiro, M.J., Couto, F.T., Bernardino, M., Cardoso, R.M., Carvalho, D., Martins, J.P.A., et al., 2021. A Review on the Current Status of Numerical Weather Prediction in Portugal 2021: Surface–Atmosphere Interactions. Atmosphere, 13, 1356. https://doi.org/10.3390/atmos13091356 | |
Oliveira, A., et al., 2022. An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples. Science of the total environment, 805, 150130. https://doi.org/10.1016/j.scitotenv.2021.150130 | |
Pauli, E., Cermak, J., and Teuling, A.J., 2022. Enhanced nighttime fog and low stratus occurrence over the Landes forest, France. Geophysical Research Letters, 49, e2021GL097058. https://doi.org/10.1029/2021GL097058 | |
Stoyanova, J.S., Georgiev, C.G., and Neytchev, P.N., 2022. Satellite Observations of Fire Activity in Relation to Biophysical Forcing Effect of Land Surface Temperature in Mediterranean Climate. Remote Sensing, 14(7), 1747. https://doi.org/10.3390/rs14071747 | |
Zhao, W., Li, X., Wang, W., Wen, F., and Yin, G., 2022. DSRC: An Improved Topographic Correction Method for Optical Remote-Sensing Observations Based on Surface Downwelling Shortwave Radiation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15, 5606015. https://doi.org/10.1109/TGRS.2021.3083754 | |
2021 | |
Cajada, M.I.B., 2021. Changes in the surface energy balance over areas affected by wildfires: a diagnostic study in Continental Portugal. Thesis Discussion. http://hdl.handle.net/10451/51965 | |
Carrer, D., Pinault, F., Lellouch, G., Trigo, I.F., Benhadj, I., Camacho, F., et al., 2021. Surface Albedo Retrieval from 40‐Years of Earth Observations through the EUMETSAT/LSA SAF and EU/C3S Programmes: The Versatile Algorithm of PYALUS. Remote Sensing, 13(3), 372. https://doi.org/10.3390/rs13030372 | |
Deneke, H., et al. 2021. Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples. Atmospheric Measurement Techniques, 14(7), 5107-5126. https://doi.org/10.5194/amt-14-5107-2021 | |
Dowling, T.P.F., Song, P., Jong, M.C.D, Merbold, L., Wooster, M.J., Huang, J., and Zhang, Y., 2021. An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques. Remote Sensing, 13(17), 3522. https://doi.org/10.3390/rs13173522 | |
Favrichon S., Prigent, C., and Jiménez, C., 2021. A Method to Downscale Satellite Microwave Land-Surface Temperature. Remote Sensing, 13(7),1325. https://doi.org/10.3390/rs13071325 | |
Feldman, A.F., Short Gianotti, D.J., Konings, A.G., Gentine, P., and Entekhabi, D., 2021. Patterns of plant rehydration and growth following pulses of soil moisture availability. Biogeosciences, 18(3), 831-847. https://doi.org/10.5194/bg-18-831-2021 | |
Grifoni, D., Messeri, A., Crisci, A., Bonafede, M., Pasi, F., Gozzini, B., et al., and on behalf of the WORKLIMATE Collaborative Group, 2021. Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy. International Journal of Environmental Research and Public Health 18(18), 9940. https://doi.org/10.3390/ijerph18189940 | |
Hong, F., Zhan, W., Göttsche, F.-M., Lai, J., Liu, Z., Hu, L., et al., 2021. A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters. Remote Sensing of Environment, 264, 112612. https://doi.org/10.1016/j.rse.2021.112612 | |
Nogueira, M., Boussetta, S., Balsamo, G., Albergel, C., Trigo, I.F., Johannsen, F., et al., 2021. Upgrading land-cover and vegetation seasonality in the ECMWF coupled system: Verification with FLUXNET sites, METEOSAT satellite land surface temperatures, and ERA5 atmospheric reanalysis. Journal of Geophysical Research: Atmospheres, 126, e2020JD034163. https://doi.org/10.1029/2020JD034163 | |
Paredes, P., Trigo, I., de Bruin, H., Simões, N., and Pereira, L.S., 2021. Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products. Agriculture and Water Management, 248. https://doi.org/10.1016/j.agwat.2020.106543 | |
Pelosi, A., and Chirico, G.B., 2021. Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data? Agricultural Water Management, 258. https://doi.org/10.1016/j.agwat.2021.107169 | |
Sismanidis, P., Bechtel, B., Keramitsoglou, I., Göttsche, F., and Kiranoudis, C.T., 2021. Satellite-derived quantification of the diurnal and annual dynamics of land surface temperature. Remote Sensing of Environment, 265, 112642. https://doi.org/10.1016/j.rse.2021.112642 | |
Soares, A.R., Deus, R., Barroso, C., and Silva, C., 2021. Urban Ground-Level O3 Trends: Lessons from Portuguese Cities, 2010–2018. Atmosphere, 12, 183. https://doi.org/10.3390/atmos12020183 | |
Trigo, I.F., Ermida, S.L., Martins, J.P.A., Gouveia, C.M., Göttsche, F.-M., and Freitas, S.C., 2021. Validation and Consistency Assessment of Land Surface Temperature from Geostationary and Polar Orbit Platforms: SEVIRI/MSG and AVHRR/Metop. ISPRS Journal of Photogrammetry Remote Sensing, 175, 282-297. https://doi.org/10.1016/j.isprsjprs.2021.03.013 | |
Witthuhn, J., Hünerbein, A., Filipitsch, F., Wacker, S., Meilinger, S., and Deneke, H., 2021. Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany. Atmospheric Chemistry and Physics, 21, 14591-14630. https://doi.org/10.5194/acp-21-14591-2021 | |
Zhang, Z., et al., 2021. Estimation of aerosol radiative effects on terrestrial gross primary productivity and water use efficiency using process-based model and satellite data. Atmospheric Research, 247, 105245. https://doi.org/10.1016/j.atmosres.2020.105245 | |
2020 | |
Barrios, J.M., Arboleda, A., De Pue, J., Chormanski, J., and Gellens-Meulenberghs, F., 2020. Continuous daily evapotranspiration with optical space borne observations at sub-kilometer spatial resolution. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142218 | |
Ehret, U., van Pruijssen, R., Bortoli, M., Loritz, R., Azmi, E., and Zehe, E., 2020. Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements. Hydrology and Earth System Sciences, 24, 4389-4411. https://doi.org/10.5194/hess-24-4389-2020 | |
Ermida, S.L., Trigo, I.F., Hulley, G., and DaCamara, C.C., 2020. A multi-sensor approach to retrieve emissivity angular dependence over desert regions, Remote Sensing of Environment, 237. https://doi.org/10.1016/j.rse.2019.111559 | |
Feldman, A.F., Gianotti, D.J.S., Trigo, I.F., Salvucci, G.D., and Entekhabi, D., 2020. Land-atmosphere drivers of landscape-scale plant water content loss. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL090331 | |
Fibbi, L., Maselli, F., and Pieri, M., 2020. Improved estimation of global solar radiation over rugged terrains by the disaggregation of Satellite Applications Facility on Land Surface Analysis data (LSA SAF). Meteorological Applications, 27(4). https://doi.org/10.1002/met.1940 | |
García-Haro, F.J., Campos-Taberner, M., Moreno, A., Tagesson, T., Camacho, F., Martínez, B., et al., 2020. A global Canopy Water Content product from AVHRR/Metop (2020). ISPRS Journal of Photogrammetry and Remote Sensing, 159, 77-93. https://doi.org/10.1016/j.isprsjprs.2020.02.007 | |
Ghilain, N., Arboleda, A., Barrios, J.M., and Gellens-Meulenberghs, F., 2020. Water interception by canopies for remote sensing based evapotranspiration models. International Journal of Remote Sensing, 14(8), 2934-2945. https://doi.org/10.1080/01431161.2019.1698072 | |
Imhoff, R.O., van Verseveld, W.J., van Osnabrugge, B., and Weerts, A.H., 2020. Scaling point-scale (pedo)transfer functions to seamless large-domain parameter estimates for high-resolution distributed hydrologic modeling: An example for the Rhine River. Water Resources Research, 56. https://doi.org/10.1029/2019WR026807 | |
Klein, C., and Taylor, C., 2020. Dry soils can intensify mesoscale convective systems. PNAS, 117(35), 21132-21137. https://doi.org/10.1073/pnas.2007998117 | |
Kotroni, V., Cartalis, C., Michaelides, S., Stoyanova, J., Tymvios, F., Bezes, A., et al., 2020. DISARM Early Warning System for Wildfires in the Eastern Mediterranean. Sustainability, 12(16), 6670. https://doi.org/10.3390/su12166670 | |
Lee, K.-S., et al., 2020. Development of Land Surface Albedo Algorithm for the GK-2A/AMI Instrument. Remote Sensing, 12(15), 2500. https://doi.org/10.3390/rs12152500 | |
Lellouch, G., Carrer, D., Vincent, C., Pardé, M., C. Freitas, S., and Trigo, I.F., 2020. Evaluation of Two Global Land Surface Albedo Datasets Distributed by the Copernicus Climate Change Service and the EUMETSAT LSA-SAF. Remote Sensing, 12(11), 1888. https://doi.org/10.3390/rs12111888 | |
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., et al., 2020. The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France. Geoscientific Model Development, 13, 3925-3946. https://doi.org/10.5194/gmd-13-3925-2020 | |
Martínez, B., Gilabert, M.A., Sánchez-Ruiz, S., Campos-Taberner, M., García-Haro, F.J., Brümmer, C., et al., 2020. Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP). ISPRS Journal of Photogrammetry and Remote Sensing, 159, 220-236, https://doi.org/10.1016/j.isprsjprs.2019.11.010 | |
Martínez, B., Sánchez-Ruiz, S., Campos-Taberner, M., García-Haro, F.J., and Gilabert, M.A., 2020. Drought Monitoring In The Mediterranean Basin Using The Seviri/Msg Gpp Product (Mgpp). 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), 367-370. | |
Martínez, B., Sánchez-Ruiz, S., Campos-Taberner, M., García-Haro, F.J., and Gilabert, M.A., 2020. Capability assessment of the SEVIRI/MSG GPP product for the detection of areas affected by water stress. Revista de Teledetección, (55), 17-29. https://doi.org/10.4995/raet.2020.13285 | |
Nguyen, H.M., and Martin, J.W., 2020. Advances in the estimation of high Spatio-temporal resolution pan-African top-down biomass burning emissions made using geostationary fire radiative power (FRP) and MAIAC aerosol optical depth (AOD) data. Remote Sensing of Environment, 238, 111971. https://doi.org/10.1016/j.rse.2020.111971 | |
Nogueira, M., Albergel, C., Boussetta, S., Johannsen, F., Trigo, I.F., Ermida, S.L., et al., 2020. Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia. Geoscientific Model Development, 13, 3975-3993. https://doi.org/10.5194/gmd-13-3975-2020 | |
Pauli, E., Andersen, H., Bendix, J., Cermak, J., and Egli, S., 2020. Determinants of fog and low stratus occurrence in continental central Europe – a quantitative satellite-based evaluation. Journal of Hydrology, 591. https://doi.org/10.1016/j.jhydrol.2020.125451 | |
Pinto, M.M., DaCamara, C.C., Hurduc, A., Trigo, R.M., and Trigo, I.F., 2020. Enhancing the Fire Weather Index with atmospheric instability information. Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/ab9e22 | |
Pinto, M.M., Libonati, R., Trigo, R.M., Trigo, I.F., and DaCamara, C.C., 2020. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 260-274. https://doi.org/10.1016/j.isprsjprs.2019.12.014 | |
Quéno, L., Karbou, F., Vionnet, V., and Dombrowski-Etchevers, I., 2020. Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain. Hydrology and Earth System Sciences, 24, 2083-2104. https://doi.org/10.5194/hess-24-2083-2020 | |
Safieddine, S., Parracho, A.C., George, M., Aires, F., Pellet, V., Clarisse, L., et al., 2020. Artificial neural networks to retrieve land and sea skin temperature from IASI. Remote Sensing, 12(17), 2777. https://doi.org/10.3390/rs12172777 | |
Sánchez-Ruiz, S., Maselli, F., Chiesi, M., Fibbi, L., Martínez, B., Campos-Taberner, M., et al., 2020. Remote Sensing and Bio-Geochemical Modeling of Forest Carbon Storage in Spain. Remote Sensing, 12(9),1356. https://doi.org/10.3390/rs12091356 | |
Schwitalla, T., Branch, O., and Wulfmeyer, V., 2020. Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quarterly Journal of the Royal Meteorological Society, 146, 846-869. https://doi.org/10.1002/qj.3711 | |
Sgoff, C., Schomburg, A., Schmidli, J., and Potthast, R., 2020. Assimilating synthetic land surface temperature in a coupled land–atmosphere model. Quarterly Journal of the Royal Meteorological Society, 146, 3980-3997. https://doi.org/10.1002/qj.3883 | |
Siljamo, N., Hyvärinen, O., Riihelä, A., and Suomalainen, M., 2020. MetOp/AVHRR Snow Detection Method for Meteorological Applications. Journal of Applied Meteorology and Climatology, 59(12), 2001-2019. https://doi.org/10.1175/JAMC-D-20-0032.1 | |
Stoyanova J., 2020. Thermodynamic Concept for Quantification of Water-Energy-Food Nexus. International Journal of Environmental Sciences & Natural Resources, 24(2), 556131. https://doi.org/10.19080/IJESNR.2020.24.556131 | |
Wang, X., and Prigent, C., 2020. Comparisons of Diurnal Variations of Land Surface Temperatures from Numerical Weather Prediction Analyses, Infrared Satellite Estimates and In Situ Measurements. Remote Sensing, 12(3), 583. https://doi.org/10.3390/rs12030583 | |
Xu, W., Wooster, M., He, J., and Zhang, T., 2020. First Study of Sentinel-3 SLSTR Active Fire Detection and FRP Retrieval: Night-time Algorithm Enhancements and Global Intercomparison to MODIS and VIIRS AF Products. Remote Sensing of Environment, 248, 111947. https://doi.org/10.1016/j.rse.2020.111947 | |
Zhao, W., and Duan, S.-B., 2020. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. Remote Sensing of Environment, 247, 111931. https://doi.org/10.1016/j.rse.2020.111931 | |
2019 | |
Blatchford, M.L., Mannaerts, C.M., Zeng, Y., Nouri, H., and Karimi, P., 2019. Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: A review. Remote Sensing of Environment, 234. https://doi.org/10.1016/j.rse.2019.111413 | |
Carrer, D., Ceamanos, X., Moparthy, S., Vincent, C., C Freitas, S., and Trigo, I. F., 2019. Satellite Retrieval of Downwelling Shortwave Surface Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 1: Methodology). Remote Sensing, 11(21), 2532. https://doi.org/10.3390/rs11212532 | |
Carrer, D., Moparthy, S., Vincent, C., Ceamanos, X., C Freitas, S., and Trigo, I. F., 2019. Satellite Retrieval of Downwelling Shortwave Surface Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 2: Evaluation). Remote Sensing, 11(22), 2630. https://doi.org/10.3390/rs11222630 | |
Ceamanos, X., Moparthy, S., Carrer, D., and Seidel, F. C., 2019. Assessing the Potential of Geostationary Satellites for Aerosol Remote Sensing Based on Critical Surface Albedo. Remote Sensing, 11(24), 2958. https://doi.org/10.3390/rs11242958 | |
de Bruin, H. A. R., and I. F. Trigo, 2019. A new method to estimate reference crop evapotranspiration from geostationary satellite imagery: practical considerations. Water, 11. https://doi.org/10.3390/w11020382 | |
Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H., Zhao, W., et al., 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16-29, https://doi.org/10.1016/j.rse.2019.02.020 | |
Ermida, S.L., Trigo, I.F., Dacamara, C.C., Jiménez, C., and Prigent, C., 2019. Quantifying the Clear-sky Bias of Satellite Land Surface Temperature using Microwave-based estimates. Journal of Geophysical Research: Atmospheres 124, 844-857. https://doi.org/10.1029/2018JD029354 | |
Feldman, A.F., Short Gianotti, D.J., Trigo, I.F., Salvucci, G.D., and Entekhabi, D., 2019. Satellite-based assessment of land surface energy partitioning-soil moisture relationships and effects of confounding variables. Water Resources Research, 55. https://doi.org/10.1029/2019WR025874 | |
García-Haro, F.J., Camacho, F., Martínez, B., Campos-Taberner, M., Fuster, B., Sánchez-Zapero, J., and Gilabert, M. A., 2019. Climate data records of vegetation variables from geostationary SEVIRI/MSG data: products, algorithms and applications. Remote Sensing, 11(18), 2103. https://doi.org/10.3390/rs11182103 | |
Ghilain, N., Arboleda, A., Batelaan, O., Ardö, J., Trigo, I., Barrios, J. M. and Gellens-Meulenberghs, F., 2019. A new retrieval algorithm for soil moisture index from thermal infrared sensor on-board geostationary satellites over Europe and Africa and its validation. Remote Sensing, 11(17), 1968. https://doi.org/10.3390/rs11171968 | |
Gschwind, B., et al., 2019. Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions–McClear-v3. Meteorologische Zeitschrift, 28(2), 147-163. https://doi.org/10.1127/metz/2019/0946 | |
Gueymard, C.A., et al. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Solar Energy, 182, 194-212. https://doi.org/10.1016/j.solener.2019.02.040 | |
Hall, J.V., Zhang, R., Schroeder, W., Huang, C., and Giglio, L., 2019. Validation of GOES-16 ABI and MSG SEVIRI active fire products. International Journal of Applied Earth Observation and Geoinformation, 83. https://doi.org/10.1016/j.jag.2019.101928 | |
Häusler, M., Nunes, J.P., Silva, J.M.N., Keizer, J.J., Warneke, T., and Pereira, J.M.C., 2019. A promising new approach to estimate drought indices for fire danger assessment using remotely sensed data. Agricultural and Forest Meteorology, 274. https://doi.org/10.1016/j.agrformet.2019.04.015 | |
Hulley, G.C., Ghent, D., Göttsche, F.M., Guillevic, P.C., Mildrexler, D.J., and Coll, C., 2019. 3-Land Surface Temperature. In Hulley, G.C. and Ghent, D. (Eds.), Taking the Temperature of the Earth, 57-127, Elsevier. ISBN 9780128144589. https://doi.org/10.1016/B978-0-12-814458-9.00003-4 | |
Johannsen, F., Ermida, S., Martins, J.P.A., Trigo, I.F., Nogueira, M., and Dutra, E., 2019. Cold Bias of ERA5 Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sensing, 11(21), 2570. https://doi.org/10.3390/rs11212570 | |
Magarreiro, C., Gouveia, C.M., Barroso, C.M., and Trigo, I.F., 2019. Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote Sensing, 11(6). https://doi.org/10.3390/rs11060604 | |
Martin, M.A., Ghent, D., Pires, A.C., Göttsche, F.-M., Cermak, J., and Remedios, J.J., 2019. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sensing, 11(5), 479. https://doi.org/10.3390/rs11050479 | |
Martins, J.P.A., Trigo, I.F., Ghilain, N., Jimenez, C., Göttsche, F.-M., Ermida, S.L., et al., 2019. An All-Weather Land Surface Temperature Product Based on MSG/SEVIRI Observations. Remote Sensing, 11(24), 3044. https://doi.org/10.3390/rs11243044 | |
Masiello, G., Serio, C., Venafra, S., Poutier, L., and Göttsche, F.-M., 2019. SEVIRI Hyper-Fast Forward Model with Application to Emissivity Retrieval. Sensors, 19(7), 1532. https://doi.org/10.3390/s19071532 | |
McCabe, M.F., Miralles, D.G., Holmes, T.R.H., and Fisher, J.B., 2019. Advances in the Remote Sensing of Terrestrial Evaporation. Remote Sensing, 11(9), 1138. https://doi.org/10.3390/rs11091138 | |
Moparthy, S., Carrer, D., and Ceamanos, X., 2019. Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties. Sustainability, 11(5), 1410. https://doi.org/10.3390/su11051410 | |
Nunes, S.A., DaCamara, C.C., Turkman, K.F., Calado, T. J., Trigo, R.M., and Turkman, M.A.A., 2019. Wildland fire potential outlooks for Portugal using meteorological indices of fire danger. Natural Hazards and Earth System Sciences, 19, 1459-1470. https://doi.org/10.5194/nhess-19-1459-2019 | |
Stefanidou, A., Gitas, I.Z., Stavrakoudis, D., and Eftychidis, G., 2019. Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary Thematic Layers. Remote Sensing, 11(23), 2786. https://doi.org/10.3390/rs11232786 | |
Stoyanova, J.S., Georgiev, C.G., Neytchev, P., and Kulishev, A., 2019. Spatial-Temporal Variability of Land Surface Dry Anomalies in Climatic Aspect: Biogeophysical Insight by Meteosat Observations and SVAT Modeling. Atmosphere, 10(10), 636. https://doi.org/10.3390/atmos10100636 | |
Stoyanova, J. S., Georgiev, C. G., Kulishev, A. (2019) Monitoring of forest cover disturbances during natural hazards by Meteosat and MetOp. Living Planet Symposium, 13-17 May 2019, Milan, Italy. (Poster presentation) | |
Stoyanova, J. S (2019) Modeling of thermodynamic processes related to agro ecosystem functioning and remote sensing application. Living Planet Symposium, 13-17 May 2019, Milan, Italy. | |
Stoyanova, J. S., Neytchev, P. N., Georgiev, C. G, Neykov, N., Kulishev, A. (2018) Joint use of SVAT model and LSA SAF products for diagnoses and forecast of vegetation state and fire danger over south-eastern Europe. Joint 2nd ISWG and 8th LSA-SAF Workshop, 26-28 June 2018, IPMA, Lisbon, Portugal. | |
Stoyanova, J. S., Neytchev, P. N., Georgiev, C. G. (2019). Advanced FIRE Risk Forecast over Mediterranean: Assessment of Terrestrial Drought in Addition to Lsa SAF FIRE Weather Indexes. 2019 Joint EUMETSAT/AMS/NOAA Satellite Conference, 29 September - 4 October 2019 in Boston, MA. | |
Stoyanova, J. S., Georgiev, C. G. (2019) Thermodynamic VIEW of Water-Energy-Carbon Nexus in the Context of Satellite Data Application for Food Security 2019 Joint EUMETSAT/AMS/NOAA Satellite Conference, 29 September - 4 October 2019 in Boston, MA. | |
van Osnabrugge, B., Uijlenhoet, R., and Weerts, A., 2019. Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River. Hydrology and Earth System Sciences., 23, 1453-1467. https://doi.org/10.5194/hess-23-1453-2019 | |
Wang, Z., Schaaf, C., Lattanzio, A., Carrer, D., Grant, I., Román, M., et al., 2019. Global Surface Albedo Product Validation Best Practices Protocol. Version 1.0. In Z. Wang, J. Nickeson and M. Román (Eds.), Good Practices for Satellite Derived Land Product Validation (p. 45): Land Product Validation Subgroup (WGCV/CEOS). | |
Zhang, Z., Chen, J.M., Guanter, L., He, L., and Zhang, Y., 2019. From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynthesis: First results from TROPOMI. Geophysical Research Letters, 46, 12030-12040. https://doi.org/10.1029/2019GL084832 | |
Zhao, W., Wu, H., Yin, G., and Duan, S.-B., 2019: Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression. ISPRS Journal of Photogrammetry and Remote Sensing, 152. https://doi.org/10.1016/j.isprsjprs.2019.04.008 | |
2018 | |
Bento, V.A., C. M. ouveGia, C. C. DaCamara, I. F. Trigo (2018). A climatological assessment of drought impact on vegetation health index, Agric. For. Meteorol., 259, 286–295. doi: https://doi.org/10.1016/j.agrformet.2018.05.014 | |
Bento, V.A., I. F. Trigo, C. M. Gouveia, C. C. DaCamara (2018). Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A Comparative Study Using Clear Sky and All-Weather Climate Data Records. Remote Sens., 10, doi: https://doi.org/10.3390/rs10091324. | |
Pinto, M.M., C.C. DaCamara, I.F. Trigo, R.M. Trigo, and K.F. Turkman (2018). Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat. Nat. Hazards Earth Syst. Sci., 18, 1–15. doi: https://doi.org(10.5194/nhess-18-1-2018 | |
Mota, B., M. J. Wooster (2018). A New Top-Down Approach for Directly Estimating Biomass Burning Emissions and Fuel Consumption Rates and Totals from Geostationary Satellite Fire Radiative Power (FRP), Remote Sens. Env., 206. doi: https://doi.org/10.1016/j.rse.2017.12.016 | |
Campos-Taberner, M.; Moreno-Martínez, Á.; García-Haro, F.J.; Camps-Valls, G.; Robinson, N.P.; Kattge, J.; Running, S.W. (2018). Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sensing, 10, 1167. doi: https://doi.org/10.3390/rs10081167 | |
Trigo, I.F., H. de Bruin, F. Beyrich, F. C. Bosveld, P. Gavilán, J. Groh, R. López-Urrea (2018). Validation of reference evapotranspiration from Meteosat Second Generation (MSG) observations, Agric. For. Meteorol., 259, 271–285. doi: https://doi.org/10.1016/j.agrformet.2018.05.008 | |
Carrer, D., Moparthy, S., Lellouch, G., Ceamanos, X., Pinault, F., Freitas, S., & Trigo, I. (2018). Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF. Remote Sensing 2018, 10(8), 1262. doi: https://doi.org/10.3390/rs10081262 | |
Ermida, S.L., Trigo, I.F., DaCamara, C.C., Roujean, J.-L. (2018). Assessing the potential of parametric models to correct directional effects on local to global remotely sensed LST. Remote Sens. Env., 209. doi: https://doi.org/10.1016/j.rse.2018.02.066 | |
Ermida, S.L., I. F. Trigo, C.C. DaCamara, and A.C. Pires (2018). A Methodology to Simulate LST Directional Effects Based on Parametric Models and Landscape Properties, Remote Sens., 10. doi: https://doi.org/10.3390/rs10071114 | |
F.J. García-Haro; M. Campos-Taberner; J. Muñoz-Marí; Valero Laparra; F. Camacho; J. Sanchez-Zapero; G Camps-Valls, (2018). Derivation of global vegetation biophysical parameters from EUMETSAT Polar System, ISPRS Journal of Photogrammetry and Remote Sensing, 139: 57-74. IF (2017). doi: https://doi.org/10.1016/j.isprsjprs.2018.03.005 | |
Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Zhou, J., Huang, F., Lai, J. and Li, M. (2018). Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 142, pp. 190-204. doi: https://doi.org/10.1016/j.isprsjprs.2018.06.008 | |
Martínez, B.; S. Sanchez-Ruiz; M.A. Gilabert; A. Moreno; M. Campos-Taberner; F.J. García-Haro; I.F. Trigo; M. Aurela; C. Brümmer; A. Carrara; A. De Ligne; D. Gianelle; T. Grünwald; J.M. Limousin; A. Lohila; I. Mammarella; M. Sottocornola, (2018). Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products, International Journal of Applied Earth Observation and Geoinformation, 65: 124-136. doi: https://doi.org/10.1016/j.jag.2017.10.011 | |
M. Campos-Taberner; García-Haro, F.J.; Busetto, L.; Ranghetti, L.; Martínez, B.; Gilabert, M.A.; Camps-Valls, G.; Camacho, F.; Boschetti, M. (2018). A critical comparison of remote sensing leaf area index estimates over rice cultivated area: from Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System, Remote sensing, 10, 763. doi: https://doi.org/10.3390/rs10050763 | |
Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Poutier, L., and Göttsche, F.-M. (2018), Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared Observations and Validation with In Situ Measurements. Remote Sensing, vol. 10, 976. doi: https://doi.org/10.3390/rs10060976 | |
P. Guillevic, F. Göttsche, J. Nickeson, G. Hulley, D. Ghent, Y. Yu, I. Trigo, S. Hook, J. Sobrino, J. Remedios et al. (2018), Land Surface Temperature Product Validation Best Practice Protocol: Land Product Validation Subgroup (WGCV/CEOS). doi: https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001 | |
2017 | |
Bento, V. A., C. C. daCamara, I. F. Trigo, J. P. A. Martins. and A. Duguay-Tetzlaff, (2017). Improving Land Surface Temperature Retrievals over Mountainous Regions. Remote Sens., 9, 38. doi:10.3390/rs9010038 | |
Ermida, S.L., C. C. DaCamara, I. F. Trigo, A. C. Pires, D. Ghent, J. Remedios, (2017a). Modelling directional effects on remotely sensed land surface temperature. Remote Sens. Env., 190, 56-69. doi: 10.1016/j.rse.2016.12.008 | |
Ermida, S., C. Jimenez, C. Prigent, I. Trigo, C. da Camara, (2017b). Inversion of AMSR-E observations for land surface temperature estimation - Part 2: Global comparison with infrared satellite temperature. J. Geophys. Res., 122. doi:10.1002/2016JD026148 | |
Orth, R., E. Dutra, I.F. Trigo, and G. Balsamo, (2017). Advancing land surface model development with satellite-based Earth observations, Hydrol. Earth Syst. Sci., 21, 2483–2495. doi: 10.5194/hess-21-2483-2017 | |
Ghent, D., Corlett, G., Goettsche, F.-M., and Remedios, J. (2017). Global land surface temperature from the Along-Track Scanning Radiometers. Journal of Geophysical Research: Atmospheres. doi: 10.1002/2017JD027161. | |
Zhou, J., Zhang, X., Zhan, W., Göttsche, F.M., Liu, S., Olesen, F.S., Hu, W., & Dai, F. (2017). A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land. IEEE Transactions on Geoscience and Remote Sensing, vol. 55 (8), pp. 4743-4756. doi: 10.1109/TGRS.2017.2698828 | |
2016 | |
Göttsche, F.-M., Olesen, F.-S., Trigo, I., Bork-Unkelbach, A., and Martin, M., Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous insitu measurements in Africa. Remote Sensing, 8, 5, p. 410. | |
Martins, J.P.A., I. F. Trigo, V. A. Bento, and C. daCamara, A physically-constrained calibration database for Land Surface Temperature using infrared retrieval algorithms, Remote Sensing, 8, 808; doi:10.3390/rs810080. | |
de Bruin, H. A. R., I. F. Trigo, F. C. Bosveld and J.F. Meirink, A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application, J. Hydrometeor., 17, 1373-1382, doi: 10.1175/JHM-D-15-0006.1 | |
M. Campos-Taberner, F.J. García-Haro, R. Confalonieri, B. Martínez, A. Moreno, S. SánchezRuiz, M.A. Gilabert, F. Camacho, M. Boschetti, L. Busetto, Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI, Remote Sensing, 8(3): 202 - 219. | |
M. Campos-Taberner; F.J. García-Haro, G. Grau-Muedra, F. Nutini, A. Crema, M. Boschetti, G. Camps-Valls, Multitemporal and Multiresolution Leaf Area Index Retrieval for Operational Local Rice Crop Monitoring, Remote sensing of Environment, 187: 102- 118. | |
Sanchez-Ruiz, S., Moreno, A., Piles, M., Maselli, F., Carrara, A., Running, S., and Gilabert, M. A., Quantifying water stress effect on daily light use efficiency in Mediterranean ecosystems using satellite data. International Journal of Digital Earth | |
van der Werf, G.R., Kaiser, J.W., van Leeuwen, T.T., Wooster, M.J. and Lehmann, C.E., Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 13(12), p.3717. | |
2015 | |
Campos-Taberner, M., F.J. García-Haro, A. Moreno, M.A. Gilabert, S. Sánchez-Ruiz, B. Martínez and Gustau Camps-Valls, Mapping Leaf Area Index with a Smartphone and Gaussian Processes, IEEE Geoscience and Remote Sensing Letters 12 (12), 2501-2505. | |
De Bruin, H. A. R., I. F. Trigo, F. C. Bosveld and J.F. Meirink, A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application, J. Hydrometeor. | |
Dramé, M., Ceamanos, X., Roujean, J.-L., Boone, A., Lafore, J.-P., and Carrer, D., On the importance of aerosol composition for estimating incoming solar radiation in West Africa: analysis in the Dakar and Niamey stations during the dry season, Atmosphere 2015, 6(11), 1608-1632. | |
Gilabert, M.A.; A. Moreno; F. Maselli; B. Martínez; M. Chiesi; S. Sánchez-Ruiz; F.J. García-Haro; A. Pérez-Hoyos; M. Campos-Taberner; O. Pérez-Priego; P. Serrano-Ortiz; A. Carrara, Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data, ISPRS Journal of Photogrammetry and Remote Sensing, 102: 184-197. | |
Masiello, G., C. Serio, S. Venafra, G. Liuzzi, F. Göttsche, I. F. Trigo, and P. Watts, Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study, Atmos. Meas. Tech., 8, 2981-2997, doi: 10.5194/amt-8-2981-2015 | |
Roberts, G., Wooster, M. J., Xu, W., Freeborn, P. H., Morcrette, J. J., Jones, L., ... & Kaiser, J., LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmospheric Chemistry and Physics Discussions, 15(11), 15909-15976. | |
Wooster, M. J., Roberts, G., Freeborn, P. H., Xu, W., Govaerts, Y., Beeby, R., & Mullen, R., Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF)--Part 1: Algorithms, product contents and analysis. Atmospheric Chemistry & Physics Discussions, 15(12). | |
Duguay-Tetzlaff, A., Bento, V. A., Göttsche, F. M., Stöckli, R., Martins, J. P., Trigo, I., Olesen, F., Bojanowski, J. S., da Camara, C., and Kunz, H., Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties. Remote Sensing, 7, 10, pp. 13139-13156. | |
Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Göttsche, F., Trigo, I., and Watts, P., Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study. Atmospheric Measurement Techniques, 8, 7, pp. 2981-2997. | |
Trigo, I.F., S. Boussetta, P. Viterbo, G. Balsamo, A. Beljaars, I. Sandu, Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling, J. Geophys. Res., 120, doi: 10.1002/2015JD023812 | |
Wooster, M.J., Roberts, G., Freeborn, P.H., Govaerts, Y., Beeby, R., He, J., Lattanzia, A. and Mullen, R., Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF): Part 1-algorithms, product contents & analysis. Atmospheric Chemistry and Physics, 15(22), pp.13217-13239. | |
Roberts, G., Wooster, M.J., Xu, W., Freeborn, P.H., Morcrette, J.J., Jones, L., Benedetti, A. and Kaiser, J., LSA SAF Meteosat FRP Products: part 2 - evaluation and demonstration of use in the Copernicus Atmosphere Monitoring. Atmospheric Chemistry and Physics, 15(22), pp.13241-13267. | |
2014 | |
Xu, H., Yu, Y., Tarpley, D., Göttsche, F.-M., and Olesen, F.-S., Evaluation of GOES-R Land Surface Temperature Algorithm Using SEVIRI Satellite Retrievals With In Situ Measurements. IEEE Transactions on Geoscience and Remote Sensing, DOI: 10.1109/tgrs.2013.2276426, ISSN: 0196-2892, Vol. 52, No. 7, pp. 3812-3822. | |
Roberts, G., & Wooster, M. J., Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sensing of Environment, 152, 392-412. | |
Peres LF, Libonati R, DaCamara CC, Land-Surface Emissivity Retrieval in MSG-SEVIRI TIR Channels Using MODIS Data. IEEE Transactions on Geoscience and Remote Sensing 52, 5587-5600. doi: 10.1109/TGRS.2013.2290778 | |
Liu, S., J.L. Roujean, A. Kaptué Tchuenté, J.C. Calvet and X. Ceamanos, A parameterization of SEVIRI and MODIS daily surface albedo with soil moisture: calibration and validation over southwestern France, Remote Sensing of Environment, 144, 137-151. | |
Johnston, J.M., Wooster, M.J., Lynham, T.J., Experimental confirmation of the MWIR and LWIR grey body assumption for vegetation fire flame emissivity, International Journal of Wildland Fire, 23, 463-479 | |
Ghilain, N., De Roo, F. and Gellens-Meulenberghs, F., Evapotranspiration monitoring with Meteosat Second Generation Satellites: improvement opportunities from moderate spatial resolution satellites for vegetation. International Journal of Remote Sensing, 35, 2654-2670, DOI: 10.1080/01431161.2014.883093 | |
Ghilain, N. and Gellens-Meulenberghs, Impact of land cover map resolution and geolocation accuracy on evapotranspiration simulations by a land surface model. Rem. Sens. Letters, 5, 491-499. | |
Freeborn, P. H., Wooster, M. J., Roy, D. P., & Cochrane, M. A., Quantification of MODIS fire radiative power ( FRP) measurement uncertainty for use in satellite- based active fire characterization and biomass burning estimation. Geophysical Research Letters, 41(6), 1988-1994doi: 10.1002/2013GL059086 | |
Freeborn, P. H., Cochrane, M. A., & Wooster, M. J., A Decade Long, Multi-Scale Map Comparison of Fire Regime Parameters Derived from Three Publically Available Satellite-Based Fire Products: A Case Study in the Central African Republic.Remote Sensing,6(5), 4061-4089 | |
Freeborn, P. H., Wooster, M. J., Roberts, G., & Xu, W., Evaluating the SEVIRI fire thermal anomaly detection algorithm across the Central African Republic using the MODIS active fire product. Remote Sensing, 6(3), 1890-1917. | |
DaCamara, Carlos C., T. J. Calado, S. L. Ermida, I. F. Trigo, M. Amraoui, and K, F. Turkman, Calibration of the Fire Weather Index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery. Int J. Wildland Fire, doi: 10.1071/WF13157 | |
Ermida, S.L., Trigo, I.F., DaCamara, C.C., Göttsche, F.M., Olesen, F.S., and Hulley, G., Validation of remotely sensed surface temperature over an oak woodland landscape -- the problem of viewing and illumination geometries. Remote Sensing of Environment, Vol. 148, pp. 16-27 | |
Carrer, D., Meurey, C., Ceamanos, X., Roujean, J.-L., Calvet, J.-C., and Liu, S., Dynamic mapping of snow-free vegetation and bare soil albedos at global 1km scale from 10-year analysis of MODIS satellite products, Remote Sensing of Environment, Vol. 140, pp. 420-432. | |
Ceamanos, X., Carrer, D., and Roujean, J.-L., An efficient approach to estimate the transmittance and reflectance of a mixture of aerosol components, Atmospheric Research, Vol. 137, pp. 125-135. | |
Ceamanos, X., Carrer, D., and Roujean, J.-L. , Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project, Atmos. Chem. Phys., 14, 8209-8232, doi:10.5194/acp-14-8209-2014 | |
Freeborn, P. H., Wooster, M. J., Roberts, G., & Xu, W., Evaluating the SEVIRI fire thermal anomaly detection algorithm across the Central African Republic using the MODIS active fire product. Remote Sensing, 6(3), 1890-1917. | |
Ghilain, N., De Roo, F., and Gellens-Meulenberghs, F., Evapotranspiration monitoring with Meteosat Second Generation satellites: improvement opportunities from moderate spatial resolution satellites for vegetation, Int. J. Remote Sensing, 35 (7), 2654-2670. | |
Ghilain, N. and Gellens-Meulenberghs, F., Assessing the impact of land cover map resolution and geolocation accuracy on evapotranspiration simulations by a land surface model, Remote Sensing Letters, 5, 5 | |
Sepulcre Cantó, G., Vogt, J., Arboleda, A, Antofie, T., Assessment of the EUMETSAT LSASAF evapotranspiration product for drought monitoring in Europe, Int. J. Applied EO Geoinf, 30, 190-202. | |
2013 | |
Sepulcre-Cantó, G., Gellens-Meulenberghs, F., Arboleda, A., Duveiller, G., Dewit, A., Eerens, H., Piccard, I., Djabi, B. and Defourny, P., Estimating crop specific evapotranspiration using remote sensing imagery at various spatial resolutions for improving crop growth modelling. Int. J. Rem. Sens., 34 (9-10), DOI:10.1080/01431161.2012.716911, 3274-3288. | |
Masiello, G., C. Serio, I. DeFeis, M. Amoroso, S. Venafra, I. F. Trigo, and P.Watts, Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances, Atmos. Meas. Tech., 6, 3613-3634, doi: 10.5194/amt-6-3613-2013. | |
Guillevic, P.C., Bork-Unkelbach, A., Göttsche, F.-M., Hulley, G.C., Gastellu-Etchegorry, J.-P., Olesen, F.-S., and Privette, J.L., Directional viewing effects on Land Surface Temperature products over sparse vegetation canopies -- A multi-sensors analysis. IEEE Geoscience and Remote Sensing Letters, DOI: 10.1109/lgrs.2013.2260319, Vol. 10, No. 6, pp. 1464-1468. | |
Göttsche, F.-M., Olesen, F.-S., and Bork-Unkelbach, A., Validation of land surface temperature derived from MSG/SEVIRI with in-situ measurements at Gobabeb, Namibia. International Journal of Remote Sensing, Vol. 34, No. 9-10, pp. 3069-3083. | |
Amraoui M, Liberato MLR., Calado TJ, DaCamara CC, Pinto-Coelho L, Trigo RM, Gouveia CM, Fire activity over Mediterranean Europe based on information from Meteosat-8. Forest Ecology and Management, 294, 62-75. doi: 0.1016/j.foreco.2012.08.032 | |
2012 | |
Wooster, M.J. nd Xu, W., Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets, Remote Sensing of Environment, 120, 236-254; | |
Göttsche, F.-M., and Hulley, G. C., Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote Sensing of Environment, Vol. 124, pp. 149-158. | |
Ghilain, N., Arboleda, A., Sepulcre-Cantó, G., Batelaan, O., Ardö, J. and Gellens-Meulenberghs, F., Improving evapotranspiration in land surface models by using biophysical variables derived from MSG/SEVIRI satellite. Hydrol. Earth Syst. Sci., doi:10.5194/hess-16-2567-2012, 15, 2567-2583. | |
Carrer, D., S. Lafont, J.-L. Roujean, J.-C. Calvet, C. Meurey, P. Le Moigne, and I. F. Trigo, Incoming solar and infrared radiation derived from METEOSAT: impact on the modeled land water and energy budget over France, J. Hydrometeor., 13, 504-520. DOI: 10.1175/JHM-D-11-059.1 | |
2011 | |
Trigo, I. F., C. C. DaCamara, P. Viterbo, J.-L. Roujean, F. Olesen, C. Barroso, F. Camacho-de Coca, D. Carrer, S. C. Freitas, J. García-Haro, B. Geiger, F. Gellens-Meulenberghs, N. Ghilain, J. Meliá, L. Pessanha, N. Siljamo, and A. Arboleda, The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725-2744, doi: 10.1080/01431161003743199 | |
Ghilain N.; Arboleda A.; Gellens-Meulenberghs F., Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data, Hydrol. Earth Syst. Sci, 15, 771-786,DOI: 10.5194/hess-15-771-2011 | |
Siljamo, Niilo, Otto Hyvärinen, New Geostationary Satellite-Based Snow-Cover Algorithm. J. Appl. Meteor. Climatol., 50, 1275-1290. doi: 10.1175/2010JAMC2568.1 | |
Roberts, G., Wooster, M. J., Freeborn, P. H. and Xu, W., Integration of geostationary FRP and polar-orbiting burned area datasets for an enhanced emissions inventory. Remote Sensing of Environment, 115, 2047-2061 | |
Rasmussen, M.O., Göttsche, F.-M., Olesen, F.-S., and Sandholt, I., Directional Effects on Land Surface Temperature Estimation from Meteosat Second Generation for Savanna Landscapes. IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, pp. 4458-4468. | |
2010 | |
Peres, L.F., DaCamara, C.C., Trigo, I. F., Freitas, S.C., Synergistic use of the two-temperature and the split-window methods for land-surface temperature retrieval. Int. J. Remote Sens., in press. | |
Carrer, D., J.-L. Roujean, and C. Meurey, Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS, IEEE Transactions on Geoscience and Remote Sensing, 48, 1714 - 1728. DOI: 10.1109/TGRS.2009.2034530. | |
Amraoui, M., C.C. DaCamara, J.M.C. Pereira, Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery, Remote Sens Environ., 114, 1038-1052. doi:10.1016/j.rse.2009.12.019. | |
Freitas, S. C., I. F. Trigo, and J. M. Bioucas-Dias, F. Göttsche, Quantifying the Uncertainty of Land Surface Temperature Retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens., 48, DOI : 10.1109/TGRS.2009.2027697. | |
Trigo, I. F., C. Barroso, P. Viterbo, S. C. Freitas, and I. T. Monteiro, Estimation of Downward Longwave Radiation at the Surface combining Remotely Sensed Data and NWP Data. J. Geophys. Res., 115, D24118, doi:10.1029/2010JD013888 | |
de Bruin, H. A. R., I. F. Trigo, M. A. Jitan, N. Temesgen Enku, C. van der Tol, and A. S. M. Gieske, Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrol. Earth Syst. Sci., 14, 2219-2228. doi:10.5194/hess-14-2219-2010 | |
Peres, L.F., DaCamara, C.C., Trigo, I. F., Freitas, S.C., Synergistic use of the two-temperature and the split-window methods for land-surface temperature retrieval. Int. J. Remote Sens., 31, 4387 - 4409, doi: 10.1080/01431160903260973 | |
Carrer, D., J.-L. Roujean, and C. Meurey, Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS, IEEE Transactions on Geoscience and Remote Sensing, 48, 1714 - 1728. DOI: 10.1109/TGRS.2009.2034530 | |
Amraoui, M., C.C. DaCamara, J.M.C. Pereira, Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery, Remote Sens Environ., 114, 1038-1052. doi:10.1016/j.rse.2009.12.019 | |
Freitas, S. C., I. F. Trigo, and J. M. Bioucas-Dias, F. Göttsche, Quantifying the Uncertainty of Land Surface Temperature Retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens., 48, DOI : 10.1109/TGRS.2009.2027697 | |
2009 | |
Verger, A., F. Camacho, F.J. García-Haro, and J. Meliá, Prototyping of Land-SAF leaf area index algorithm with VEGETATION and MODIS data over Europe, Remote Sens Environ., 113, 2285-2297., DOI:10.1016/j.rse.2009.06.009. | |
Göttsche, F.-M, F.-S. Olesen, Modelling the effect of optical thickness on diurnal cycles of land surface temperature, Remote Sens Environ., 113, 2306-2316, DOI: doi:10.1016/j.rse.2009.06.006. | |
Freeborn, P. H., M. J. Wooster, G. Roberts, B. D. Malamud, W. Xu, Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data, Remote Sens Environ., 113, 1700-1711, DOI: 10.1016/j.rse.2009.03.013. | |
Ineichen, P., C. S. Barroso, B. Geiger, R. Hollmann, A. Marsouin, R. Mueller, Satellite Application Facilities irradiance products: hourly time step comparison and validation over Europe. Int J Remote Sens, 30, 5549-5571. | |
Roberts, G., Wooster, M.J., and Lagoudakis, E., Annual and diurnal African biomass burning temporal dynamics, Biogeosciences, 6, 849-866. | |
2008 | |
Geiger, B., C. Meurey, D. Lajas, L. Franchistéguy, D. Carrer, and J.-L. Roujean, Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorol. Appl. 15, pp. 411-420. DOI: 10.1002/met.84 | |
Geiger, B., D. Carrer, L. Franchistéguy, J.L. Roujean, and C.Meurey, Land surface albedo derived on a daily basis from Meteosat Second Generation observations, IEEE Transactions on Geoscience and Remote Sensing, 46, 3841-3856. DOI:10.1109/TGRS.2008.2001798 | |
Kabsch, E., F. Olesen, F. Prata, Validation of Land Surface Temperatures (LSTs) derived from MSG/SEVIRI with the Evora, Portugal ground-truth station measurements, Special issue of the International Journal of Remote Sensing, 29, pp. 5329-5345. DOI: 10.1080/01431160802036326 | |
Trigo I. F., L. F. Peres, C. C. DaCamara, and S. C. Freitas, Thermal Land Surface Emissivity Retrieved From SEVIRI/Meteosat, IEEE Trans. Geosci. Remote Sens., 46, 307-315, doi: 10.1109/TGRS.2007.905197. | |
Trigo, I. F., I. T. Monteiro, F. Olesen, and E. Kabsch, An assessment of remotely sensed land surface temperature, J. Geophys. Res., 113, D17108, doi:10.1029/2008JD010035. | |
2007 | |
Gellens-Meulenberghs, F., Arboleda, A. and Ghilain, N., Towards a continuous monitoring of evapotranspiration based on MSG data. In "Remote Sensing for Environmental Monitoring and Change Detection", M. Owe and Ch. Neale eds., IAHS Publ. 316, 228-234. | |
Freitas, S. C., I. F. Trigo, and J. B. Dias, Error propagation in the LSA-SAF algorithm for Land Surface Temperature. Proceedings of the 2007 EUMETSAT Meteorological Satellite Conference, Amsterdam, The Netherlands, 24-28 September 2007. | |
Trigo, I. F., C. Barroso, S: C. Freitas, P. Viterbo, Assessment of algorithms for Land Surface Analysis Down-welling Long-wave Radiation at the surface. Proceedings of the 2007 EUMETSAT Meteorological Satellite Conference, Amsterdam, The Netherlands, 24-28 September 2007. | |
2006 | |
Gellens-Meulenberghs, F, Arboleda, A. and Ghilain, N., Status of development of the LSA-SAF evapotranspiration product. Proceedings of the 2nd LSA-SAF Training Workshop, Lisbon, 8-10 March, 10 pp. | |
Trigo, I., C. Madeira, L. Peres and C. DaCamara, Producing realistic emissivity maps for the improvement of Land Surface Temperature in Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference | |
2005 | |
Arboleda, A., Ghilain, N. and Gellens-Meulenberghs, F., The LSA-SAF evapotranspiration product - first results with MSG. Proceedings of the 2005 EUMETSAT meteorological satellite data user´s conference, Dubrovnik, Croatia, 19th - 23th September, 7 pp. | |
Peres L. F., and C. C. DaCamara, Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI, IEEE Trans. Geosci. Remote Sens., 43, doi: 10.1109/TGRS.2005.851172. | |
Barroso, C, I. F. Trigo, F. Olesen, C. DaCamara, and M. P. Queluz , Intercalibration of NOAA and Meteosat window channel brightness temperatures, Int. J. Remote Sens., 26, 3717-3733. | |
Madeira, C., P. Dash, F. Olesen, and I. F. Trigo , Intercomparison of Meteosat-8 derived LST with MODIS and AATSR similar products in Proceedings of the 2005 EUMETSAT Meteorological Satellite Conference | |
2004 | |
Trigo, I. F., The use of remote sensing data to improve the modelling of skin temperature. ECMWF/ELDAS Workshop on Land Surface Assimilation, 8-11 November 2004, pp 49-60, ECMWF, Shinfield Park, Reading, UK. | |
2003 | |
Arboleda, A., Hanton, P. and Gellens-Meulenberghs, F., Assessment of the evapotranspiration and surface fluxes in the framework of the Land-SAF: methodology and first results. Proceedings of the 2003 EUMETSAT meteorological satellite data user´s conference, Weimar, Germany, 29th September - 3rd October 2003, 8 pp. | |
Trigo, I. F., and P. Viterbo, Clear-Sky Window Channel Radiances: A Comparison between Observations and the ECMWF Model. J. Appl. Meteor., 42, 1463-1479 | |
2002 | |
Hanton, P., Gellens-Meulenberghs, F., Keller, T., Portmann, F., Debal, F., Arboleda, A., Assessment of the algorithms of Land SAF evapotranspiration and soil moisture products with in situ observations. Proceedings of the 2002 EUMETSAT LSA SAF Workshop, Lisbon, Portugal, 8-10 July 2002, 8 pp. | |
Keller, T., Gellens-Meulenberghs, F., Portmann, F., Hanton, P., Debal, F., Arboleda, A., Soil moisture and evapotranspiration Land SAF products. Proceedings of the 2002 EUMETSAT LSA SAF Workshop, Lisbon, Portugal, 8-10 July 2002, 8 pp. | |
2001 | |
Pieroux, D., Debal, F., Gellens-Meulenberghs F., Quinet A., Estimation of evapotranspiration all over Europe using MSG remote sensing, Proceedings of the 2001 EUMETSAT Meteorological Satellite Data Users Conference, Antalya, Turkey, 1-5 October 2001, 121-128. |